
Thermal reaction of 1,2-disilacyclohexa-3,5-dienes with
tetracyanoethylene (TCNE) gave 8-amino-6,6,11,11-tetramethyl-
2,3,4,5-tetraphenyl-7-aza-6,11-disilatricyclo[5,3,0,12,5]undeca-
3,8,10(1)-triene-9,10-dicarbonitrile through a charge-transfer
complex.

Group 14 element (silicon, germanium)–group 14 element
σ bonds with rather low ionization potential are excellent elec-
tron donors.  As electron-rich species, these group 14 element
catenates are subject to cleavage by various organic elec-
trophiles as well as transition metal complexes through a
charge-transfer (CT) complex.1 During the past two decades,
the CT interactions between group 14 element–group 14 ele-
ment σ bonds and common electron acceptors such as tetracya-
noethylene (TCNE) have been amply investigated.2–8 In a pre-
vious paper,9 we reported a ring-contraction reaction of 1,2-
digermacyclohexa-3,5-dienes initiated by CT with TCNE.  We
describe herein the cyclization reaction of 1,2-disilacyclohexa-
3,5-dienes through a CT complex with TCNE.  

A solution of 1,1,2,2-tetramethyl-1,2-disila-3,4,5,6-tetra-
phenylcyclohexa-3,5-diene10 (1) (0.4 mmol) and TCNE (0.4
mmol) in dichloromethane was placed in a Pyrex tube under
argon and sealed.  The color of the solution changed from yel-
lowish-green to reddish-brown.  The reaction mixture was heat-
ed at 90 °C for 3 h to give 8-amino-6,6,11,11-tetramethyl-
2,3,4,5-tetraphenyl-7-aza-6,11-disilatricyclo[5,3,0,12,5]undeca-
3,8,10(1)-triene-9,10-dicarbonitrile (2, 39%), 1,1,3,3-tetram-
ethyl-4,5,6,7-tetraphenyl-2-oxa-1,3-disilacyclohepta-4,6-diene
(3, 18%), and 5,5,6,6-tetracyano-7,7-dimethyl-1,2,3,4-
tetraphenyl-7-silanorbornene (4, 5%).  The rest of 1 remained
unreacted.  Concentration of the reaction mixture by evapora-
tion of dichloromethane followed by preparative GPC gave
pure 2 and 3, which showed satisfactory NMR and MS data.11

7-Silanorbornene 4 could not be isolated owing to its small
amount.  The silanorbornene 4 was characterized by NMR
spectra in comparison with those of authentic sample.12 Several
unidentified by-products in minor amounts were also formed.
In spite of all efforts to minimize moisture and air, 3 was
obtained in substantial amounts.

The effect of reaction conditions on the yield of 2 in the
present CT reaction was examined.  The ratio of 1/TCNE on the
yield of 2 at 90 oC for 3 h was examined.  Increase in the con-
centration of TCNE relative to 1 did not influence the yields of
2.  Lowering the reaction temperature from 90 to 70 oC resulted
in lower yields of 2 (39 to 15%).  Extending the reaction time
scarcely improved the yield of 2.

The molecular structure of 213 is shown in Figure 1, togeth-
er with selected bond distances and angles.  The 1-azacyclo-
pentadiene ring and the C(5)–C(4)–N(1)–Si(2)–C(8) plane are
almost planar.  The bond angles of Si(1)–C(8)–C(7) and
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Si(1)–C(8)–Si(2) are 97.2 (2) and 107.65 (16)o, respectively.
The color of the solution of 1 and TCNE in

dichloromethane strongly suggests the CT interaction between
1 and TCNE.  The formation of a CT complex is evidenced by
the ESR spectrum of the TCNE radical anion (g = 2.0031, aN =
1.56 G) at room temperature.3

From these results, we propose a possible mechanism for the
formation of products 2–4 by CT of 1 with TCNE as depicted in
Scheme 1.  Initially, 1 is readily oxidized by TCNE to give radi-
cal cation 1+•, in which the Si–Si bond possibly gives an open
intermediate 5+•.  Then, subsequent intramolecular addition of
one of the silyl groups to the diene moiety gives to 6+•.  The
intermediate 6+• reacts with TCNE–• to give biradical 7.
Compound 2 is derived from 7 after several steps.  On the other
hand, the intermediate 6+• undergoes spontaneous scission to a
radical cation of 1-silacyclopenta-2,4-diene (silole) and
dimethylsilyene (Me2Si:).  The radical cation of silole is reduced
with TCNE–• to afford silole 8 and TCNE.   The silole 8 thus
formed reacts with TCNE to give 7-silanorbornene 4.  Some
parts of 5+• react with oxygen to give 2,3-disila-1-oxacyclohepta-
4,6-diene 3.  None of the eliminated Me2Si: part could be detect-
ed.  Further mechanistic studies of 2 are in progress to verify
these speculations.

The present results are in marked difference to those of the
formation of siloles in photo-induced electron transfer of 1,2-
disilacyclohexadienes with methylene blue14 and dibenzosilole
in the photoexcitation of the CT complex between dibenzodisila-

cyclohexadiene and TCNE.15
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